23 ICLR

ILLUSION

Unveiling Truth With a Comprehensive Multimodal, Multilineual Deepfake Dataset

Kartik Thakral', Rishabh Ranjan', Akanksha Singh'?, Akshat Jain', Mayank Vatsa', Richa Singh'’
"IT Jodhpur ?lISER Bhopal



MOTIVATION

With the increasing prevalence of deepfakes on the internet enabling misinformation, fraud, and social
engineering, there is an urgent need for robust detection methods to safeguard digital trust and security.
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INTRODUCTION

Problem Statement Research Gaps B
Unimodal Variation 1as
. kin-t -
The purpose of the dataset is Most SOTAs are unimodal Exhaustive list of models, Sexand skin-type biases
to aid in the creation of video length, quality of sync

multimodal deepfake
detection algorithms that are
robust to all forms of fake
media and unified across all
three modalities, are bias-free
and imperceptible to human
eyes.
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Comparison of the proposed dataset with existing datases based on modalities, size, and manipulations




COMPARISON WITH EXISTING DATASETS

Overlap of Generative Technigques Across Datasets
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COMPARISON WITH EXISTING DATASETS

- Dataset Jaccard Index
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Uniqueness of the proposed dataset in comparison
to existing datasets using Jaccard index.

Feature-level comparison between proposed
dataset and FakeAVCeleb (PCA and t-SNE).



DATASET STATISTICS

28 4
lechniques sets

139740 277244

real samples fake audio
200454 905548
fake videos fake images
1371986

total samples Collated samples of techniques used.



GENERATION PIPELINE: SET A
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DATASET DESCRIPTION: SET A

Source Video
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Target Video 1
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1 Structure:
“another serum i have been lovingis | | ° Skin_tone based:
Feenme T b et 1.Bin 1 Light (Fitzpatrick | and Il)
/ \ 1 2.Bin 2 Light-Medium (Fitzpatrick Ill)
AT N 3.Bin 3 Medium-Dark (Fitzpatrick IV)
s ! 4.Bin 4 Dark (Fitzpatrick V and V)

L e Sex based: Male & Female

d Classes:

Real Audio - Real Video

.Real Audio - Fake Video
.Fake Audio - Real Video

.Fake Audio - Fake Video

Different Components of Set A: [dentity-swaps



Target sSource

Result

lllustrative example of Set A: Identity-swaps creation



DATASET DESCRIPTION: SET B
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“This middle
eastern folk
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male voice.”
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These-Faces-Do-Not-Exist

Used real dataset:
e Audio: MusicCaps
e Images: COCO
e Video: MSR-VTT

Structure for This Person Does Not Exist
e Skin-tone based: Bin 1, Bin 2, Bin 3 &
Bin 4
e Sex based: Male & Female

Different Components of Set-B: Al Generated Content



DATASET DESCRIPTION: SET C & SET D
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Social media Videos

Fakes in the Wild

Sample Generated from:
e Images: Midjourney &
ArtGuru
e Videos: Real-World
Deepfakes from
Internet

" EAAICT

" | —_

Multi-Modal and Multi-Lingual
Deepfake Videos

Chinese French Korean

Multi-Lingual Audios

K Fakes Sourced from Social media j

Multi-Lingual Fakes in the Wild

e

Languages used:

26 languages, including French,
German, Italian, Chinese, Korean,
Arabic, Japanese, Tamil, Kannada,
Oriya, Hindi, Sanskrit, Latin,
Punjabi, and Gujarati.

Different Components of Set-C & D: Unseen Test Sets



RESEARCH QUESTIONS & PROTOCOLS
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RQ1 R92 R9s3 RQ4 R95
How effective are the How effective are the How robust and reliable Is it feasible to detect Is it possible to
detection systems in detection systems in are the current state-of- identity swaps and successfully trace back
detecting multi-modal identifying the-art detection synthetic media in a the source of a given
identity-swaps? synthetically generated algorithms when zero-day attack deepfake?
media? deployed in real-world setting?
scenarios?

® ° ° °

Protocol 1 Prolocol 3 Protocol 2 Protocol 4

Multi-modal Generalization on Zero-shot/ Performance on

Deepfake Real-World Zero-day Model Attribution

Detection Deepfake Media Generalization



EXPERIMENT 1
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Results g @ TrainSet A, TestSetA @ Train Set B, Test Set B @® RA-RV RA-FV FA-RV @ FA-FV
R R 1.000 v v v v 1.000
Discussions o
0.800
1. All architectures
. 0-600
perform well for both > 0.800
audio and visual 0.400
unimodal detection. 0.200
.. 0.000 :
perform best in visual RawGAT_ST AASIST Conformer SSLModel >
- S
and audio models, Models 3
. ($]
reSpeCtlvely. @ Train Set A, Test Set A Train Set B, Test Set B <
0.400
3.MRDF outperforms 1.000 . -
[
FACTOR across all 0.800
classes.
0.600
o 0.200
< 0.400
0.200
0.000 0.000
F3Net DSP-FWA MesolnceptionNet Xception MRDF FACTOR Unimodal Ensembling
Models Models
Unimodal audio detection (top) & Multimodal detection performance when trained and tested

unimodal visual detection (bottom) performance on Set A



EXPERIMENT 2

Results &
Discussions

1.Models trained on Set A
and tested on Set B show
random performance for
both audio and visual
models, and vice versa is
also true.

2.The inference is that the
artifacts of identity swaps
and synthetic media are
completely different.
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Chart: Cross train-test set audio detection performance
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Cross train-test set visual detection performanceA



EXPERIMENT 3
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unseen visual detection (bottom) performance SetD.2



EXPERIMENT 4

°®
Results g ® SetA SetB @® SetA @ SetB(lmages) @ SetB (Videos)
. . 1.000 1.000 4 3 ) 4
Discussions é T
1.Both audio and visual
. o
models perform well in 0.800 0.800 .
the model attribution task
for both Set A and Set B.
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generative models
. . (&) (&)
introduce unique 2 2
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. 0.400 0.400
which can be
differentiated easily.
0.200 0.200
o
0.000 0.000
RawGAT_ST AASIST Conformer SSLModel F3Net DSP-FWA MesolnceptionNet Xception
Models Models

Audio model attribution performance

Visual model attribution performance



CONCLUSION

With this paper, we introduce the ILLUSION dataset, a significant step towards a comprehensive, multimodal
deepfake resource. Created using 28 state-of-the-art generative models, ILLUSION provides diverse Al-
generated content across image, audio, and video modalities, including both curated real-world deepfakes
and synthetic media. This desigh enables models trained on ILLUSION to learn features that extend beyond
synthetic artifacts, enhancing generalization across domains, particularly in multilingual and noisy settings.
Results show that detection models trained on ILLUSION outperform those trained on existing datasets when
evaluated on unseen generative techniques and real-world forgeries.
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Thank you!

The dataset is available at: hitps:/ www.iab-rubric.ore/illusion-database.

Reach out to us at mvatsa@iitj.ac.in.
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