Audio Spoof Detection for Indian setting

W/DR GOKUL S KRISHNAN, DR GEETHA RAJU AND PROF B. RAVINDRAN

MOTIVATION

In discussions with Ms. Pamposh Rain, Head of the Deepfakes Analysis Unit, we found that fact-checkers in India currently grapple with audio spoofs more urgently than visual deepfakes.

- Audio spoof artifacts are not as conspicuous as in videos or images.
- Have **perturbations** like background noise, music, and go through compression that makes human and AI detection harder.
- Indian languages are less represented compared to the English and Global North.

A near-real audio spoof, threats from audio spoof and DAU in action (Left to Right).

BACKGROUND

			ASVspoof19 eval		In-the-Wild Data
Model Name	Feature Type	Input Length	EER%	t-DCF	EER%
LCNN	cqtspec	Full	6.354±0.39	0.174±0.03	65,559±11,14
LCNN	cqtspec	4s	25.534±0.10	0.512±0.00	70.015±4.74
LCNN	logspec	Full	7.537±0.42	0.141±0.02	72.515±2.15
LCNN	logspec	4s	22.271±2.36	0.377±0.01	91.110±2.17
LCNN	melspec	Full	15.093±2.73	0.428±0.05	70.311±2.15
LCNN	melspec	4s	30.258±3.38	0.503±0.04	81.942±3.50
LCNN-Attention	cqtspec	Full	6.762±0.27	0.178±0.01	66.684±1.08
LCNN-Attention	cqtspec	4s	23.228±3.98	0.468±0.06	75.317±8.25
LCNN-Attention	logspec	Full	7.888±0.57	0.180 ± 0.05	77.122±4.91
LCNN-Attention	logspec	4s	14.958±2.37	0.354±0.03	80.651±6.14
LCNN-Attention	melspec	Full	13.487±5.59	0.374±0.14	70.986±9.73
LCNN-Attention	melspec	4s	19.534±2.57	0.449±0.02	85.118±1.01
LCNN-LSTM	cqtspec	Full	6.228±0.50	0.113±0.01	61.500±1.37
LCNN-LSTM	cqtspec	4s	20.857±0.14	0.478±0.01	72.251±2.97
LCNN-LSTM	logspec	Full	9.936±1.74	0.158±0.01	79.109±0.84
LCNN-LSTM	logspec	4s	13.018±3.08	0.330 ± 0.05	79.706±15.80
LCNN-LSTM	melspec	Full	9.260±1.33	0.240±0.04	62.304±0.17
LCNN-LSTM	melspec	4s	27.948±4.64	0.483±0.03	82.857±3.49
LSTM	cqtspec	Full	7.162±0.27	0.127±0.00	53.711±11.68
LSTM	cqtspec	4s	14.409±2.19	0.382±0.05	55.880±0.88
LSTM	logspec	Full	10.314±0.81	0.160±0.00	73.111±2.52
LSTM	logspec	4s	23.232±0.32	0.512±0.00	78.071±0.49
LSTM	melspec	Full	16.216±2.92	0.358±0.00	65.957±7.70
LSTM	melspec	4s	37.463±0.46	0.553±0.01	64.297±2.23

Feature type:
Hand-crafted: LFCC/MFCC/CQCC/Mel Spectrogram | Spectrogram Learning based: Raw waveform, WavLM/Wav2Vec2/Whisper Metrics: t-DCF, EER, Accuracy (Class/Balanced), F1, AUROC Data augmentation: SpecAug, RawBoost

MesoNet	cqtspec	Full	7.422±1.61	0.219±0.07	54.544±11.50
MesoNet	cqtspec	48	20.395±2.03	0.426±0.06	65.928±2.57
MesoNet	logspec	Full	8.369±1.06	0.170±0.05	46.939±5.81
MesoNet	logspec	4s	11.124±0.79	0.263±0.03	80.707±12.03
MesoNet	melspec	Full	11.305±1.80	0.321±0.06	58.405±11.28
MesoNet	melspec	4s	21.761±0.26	0.467±0.00	64.415±15.68
ResNet18	cqtspec	Full	6.552±0.49	0.140±0.01	49.759±0.17
ResNet18	cqtspec	4s	18.378±1.76	0.432±0.07	61.827±7.46
ResNet18	logspec	Full	7.386±0.42	0.139 ± 0.02	80.212±0.23
ResNet18	logspec	48	15.521±1.83	0.387±0.02	88.729±2.88
ResNet18	melspec	Full	21.658±2.56	0.551±0.04	77.614±1.47
ResNet18	melspec	48	28.178±0.33	0.489 ± 0.01	83.006±7.17
Transformer	cqtspec	Full	7.498±0.34	0.129±0.01	43.775±2.85
Transformer	cqtspec	48	11.256±0.07	0.329±0.00	48.208±1.49
Transformer	logspec	Full	9.949±1.77	0.210±0.06	64.789±0.88
Transformer	logspec	4s	13.935±1.70	0.320 ± 0.03	44.406±2.17
Transformer	melspec	Full	20.813±6.44	0.394±0.10	73.307±2.81
Transformer	melspec	4s	26.495±1.76	0.495±0.00	68.407±5.53
CRNNSpoof	raw	Full	15.658±0.35	0.312±0.01	44.500±8.13
CRNNSpoof	raw	4s	19.640±1.62	0.360±0.04	41.710±4.86
RawNet2	гaw	Full	3.154±0.87	0.078±0.02	37.819±2.23
RawNet2	raw	4s	4.351±0.29	0.132±0.01	33.943±2.59
RawPC	raw	Full	3.092±0.36	0.071±0.00	45.715±12.20
RawPC	raw	4s	3.067±0.91	0.097±0.03	52.884±6.08
RawGAT-ST	raw	Full	1.229±0.43	0.036±0.01	37.154±1.95
RawGAT-ST	raw	4s	2.297±0.98	0.074 ± 0.03	38.767±1.28

Müller et al., "Does Audio Deepfake Detection Generalize?"

MOTIVATION

What Does an Audio Deepfake Detector Focus on? A Study in the Time Domain

Petr Grinberg*[†], Ankur Kumar[†], Surya Koppisetti[†], Gaurav Bharaj[†]
*EPFL, Switzerland, [†]Reality Defender Inc., USA
petr.grinberg@epfl.ch, {ankur, surya, gaurav}@realitydefender.ai

A Data-Driven Diffusion-based Approach for Audio Deepfake Explanations

Petr Grinberg^{1,2}, Ankur Kumar², Surya Koppisetti², Gaurav Bharaj²

¹EPFL, Switzerland ²Reality Defender Inc., USA

petr.grinberg@epfl.ch, {ankur, surya, gaurav}@realitydefender.ai

relevancy based XAI for transformers ADD models compared against Grad-CAM and SHAP-based methods using faithfulness metrics, perturbation test and partial spoof test,

investigates importance of speech/nonspeech, phonetic content and voice onsets/offsets.

identifying artifacts by **training a diffusion model** on **spoof spectrogram-difference signal** (vocoded - real audio) as i/p and o/p pairs,

conditioning the model specific to a **classifier** using its **intermediate features** as guidance.

What You Read Isn't What You Hear: Linguistic Sensitivity in Deepfake Speech Detection

Binh Nguyen¹ Shuju Shi² Ryan Ofman³ Thai Le²

¹Independent Researcher ²Indiana University ³Deep Media AI

¹nqbinh17@apcs.fitus.edu.vn ²{shi16,tle}@iu.edu ³ryan@deepmedia.ai

adversarial attacks on detectors through
text level manipulations
signifies model is sensitive to linguistic
complexities

BASELINES DATASETS

ASVspoof2019_LA Train

English

Test

English

ASVspoof2021_DF ASVspoof2021_LA

Test

English

Fake-or-Real **Test**

English

In the Wild

Test

English

Collected and not generated

Dataset	Train		D	ev	Eval	
	Real	Fake	Real	Fake	Real	Fake
ASVspoof2019_LA	2580 utt	22800 utt	2548 utt	22296 utt	7355 utt	64578 utt
ASVspoof2021_LA	-	-	-	-	~180,000 utt	
ASVspoof2021_DF	-	-	-	-	~600,000 utt	
Fake-or-Real	-	-	-	-	111000 utt	87000 utt
In The Wild	-	-	-	-	20.8 hours	17.2 hours

FURTHER DATASETS

PartialSpoof

Test

ASVspoof but with partial spoofing.

IndieFake

Test

Indian accented English.

MLAAD

Test

Multilingual

HAV-DF

Test

Hindi

Dataset	Train		De	ev	Eval	
	Real	Fake	Real	Fake	Real	Fake
PartialSpoof	-	-	-	_	7355 utt	64578 utt
IndieFake	-	_	_	-	8,164	11,396
MLAAD	-	_	-	-		485.3 hours
HAV-DF	-	-	-	-	200	308

MODELS

AASIST (2022)

Conformer (2024)

RawGAT-ST (2021)

SSL Model wav2vec

transformer-based transformer+CNN

graphs+transformer

raw features

RawNet2 (2021)

self supervised learning

spectro-temporal attention

modelling local (convolutional) and global spectro-temporal graph attention (transformer)

network, fuses spectral and temporal signals within the architecture — rather than combining outputs later, captures cross-domain artifacts

end-to-end raw waveform modelling, captures low-level artifacts that may not appear in handcrafted or spectrogram features

robust and transferable feature extraction

TESTING RESULTS

Insights:

- 1. Consistent change in performance amongst models.
- 2. **Drop** in performance occurs in the case of a **PartialSpoof Fake** class, while the **Real** class remains **unchanged**.
- 3. **Drop** in performance for **Real** class for all OOD datasets.
- 4.00D language doesn't necessarily make detection tougher.

TESTING RESULTS

Insights:

1. Hindi > Indian-accented English > In the wild > Fake or Real

MULTILINGUAL TESTING

Conformer model accuracy for each language

Lang w/ small sample size:

mr: 1000 samples | Acc: 0.517

hr: 1000 samples | Acc: 1.000

lv: 1000 samples | Acc: 1.000

Lang w/ large sample size:

it: 12000 samples | Acc: 0.8691)

fr: 14000 samples | Acc: 0.749

en: 54000 samples | Acc: 0.832

The multilingual benchmark treats each language equally, but accuracy estimates may be less reliable for languages with fewer test samples.

WORK IN PROGRESS & PLAN

Data generation

data to be generated using models

- MMS
- IndicF5
- IndicParler-TTS
- Fastspeech2_HS
- Syspin
- Parrot-TTS
- Coqui-ai
- Indri
- Veena

on following Indic datasets:

- IN22 Al4Bharat
- Flores+ Meta

Analysis

0

- inference Why the change in model performance based on datasets > What is the scope of a model > What case was it developed for – architectural choices and datasets > What are the boundaries of the model?
- **interpretability** What are the interpretable features for classification?
 - post-hoc interpretability models on top of existing models - gnformation flows by maximising the attention weights, Gradientbased input attribution transformer models, probing - representations from layers and using a simple classifier on top of it.

• **explainability** – How explainable are the results through the features?

Tool creation

ensembling

- based on voting based on merits of models
- using AdaBoost and/or XGBoost.

Thank you!

FLOOR IS OPEN FOR DISCUSSION.

